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ILIZATION OF LINEAR SYSTEMS WITH MULTIPLICATIVE PERTURBATIONS 

AND INCOMPLETE INFORMATION* 

L.B. RIASHKO 

The problem of stability of a stochastic system with several multiplicative pertur- 
bations is reduced to the determination of a quadratic criterion for a simpler 
system with a lesser number of perturbations. A sequential procedure that makes 
possible the determination of the necessary and sufficient conditions of stability 
and, also, of the stabilizing control parameters is proposedforacontrolledsystem 
with multiplicative perturbations and incomplete information. The problem is re- 
duced to solving a number of optimalization problems. By majorizing several pertur- 
bations by a single one a theorem on merging is obtained, which provides sufficient 
conditions of stability that considerably simplifies construction of the stabiliz- 
ing control. 

The present investigation is directly related to /l/, where the problem of stabilization 
of a stochastic system with several perturbations and availability of complete informationwas 
reduced to the problem of optimization of a simpler system with a lesser number of perturba- 
tions. That idea is further developed here for application in cases of incompleteinformation. 

The problem of optimal control construction for a system with additive perturbations and 
incomplete information is readily solved by using the theorem on separation /2/. In the case 
of multiplicative perturbations the optimal filter becomes nonlinear and, generally, infinite 
dimensional /3/. This creates mathematical difficulties in the investigation of its possibil- 
ities in the problem of constructing stabilizing controls. Such controls designed on the 
principle of direct feedback based on observed variables were used in /4,5/ for systems with 
multiplicative perturbations and incomplete information. However such controls often do not 
stabilize a system even in the determinate case. 

The necessary condition of stability of a system with perturbations is its stability in 
the absence ofperturbations. Hence it is reasonable to seek controls for stabilizing stoch- 
astic systems among controls that stabilize determinate systems. This is taken below as the 
starting point. 

1. Statement of the problem. Consider the stochastic system Sk 

I; 

x’ = Ax + Bu + 2 yr (I, u) UT’, Vr (G u) = Jx*Qrx + u*p,u (1.1) 
r=t 

with incomplete information, when observation is defined by the stochastic system 

where x is an n-dimensional vector, u is the m-dimensional control, y is the q-dimensional 
vector of observed variables; A, B and Care matrices of dimensions n X n, n X m, q X n, v,(t) 
and u+(t) are Wiener vector processes independent in the aggregate, of dimensions n and g 
with parameters 

M {vr (t) - v, (s)} = 0, M {Iv, (t) - vr (s)l Iv, (t) - v, (s)l*) = V,. 1 t - s I 

M {w, (t) - w, (8)) = 0, M {Iw, (t) - w, (s)l IUJ, (t) - w, (W) = WF* 1 t - s i 

and Qr, P,, V,, W, are nonnegative determinate matrices (Qr > 0, P, > 0, Vr > 0, W, > 0) of 

*Prikl.Matem.Mekhan.,45,No.5,778-786,1981 

581 



582 L.B. Riashko 

dimensions n X n, m X m, n X n, q X q. 

To stabilize system (1.1), (1.2) we shall use a control consisting of a filter (of the 
known Kalman-Bucy structure), viz. 

z' = AZ + Bu + L (y’ - Cz) (1.3) 

and of feedback 

u=-Kz 
(1.4) 

The dynamic properties of control (1.3), (1.4) depend on the selection of matrices Kand 
L of dimensions m X n and n x q. 

If the pair (A, B) can be stabilized and the pair (A, C) can be detected (condition A), 
then by an appropriate selection of K and Lit is always possible to have control (1.3), (1.4) 
such that the determinate system 

x' = Ax + Bu, y’ = Cx (1.5) 

is stabilized (see, e.g., /6/). 

2. Stability. Consider besides system 

(2.1) 

the system 

with the additional perturbation CZ(X)U', where u(t) 
vr(t) n -dimensional Wiener process with parameters 

a(x) = JfX*QX (2.2) 

is an independent in the aggregate with 

M {II (t) - v (s)} = 0, M {b (t) - v ($1 b (t) - v (h-)1*) = v. 1 t - s I 

Theorem 2.1. If system (2.1) is exponentially stable in the mean square, then for 
system (2.2) to be exponentially stable in the mean square it is necessary and sufficientthat 
the following inequality be satisfied: 

where z(t) is the solution of system (2.1) for the random initial vector z(O) for which 
M (s (O)z*(O), = V. 

This condition was used in /l/ for investigating the problem of stabilization in the 
case of complete information, although it was not explicitly formulated there. Its proof 
based on the method of Liapunov's functions using spectral properties of positive operators 

in essence, fully contained in the proof of Theorem 2.1 in /l/. 
:ziteria close to the above appeared in /7,0/. 

Note that stability 
In the case of incomplete information problem 

of stabilization can be conveniently solved using another criterion of stability. 
Besides (2.1) and (2.2) we consider the system 

2' = Ax + 5 a, (x) u,’ f u’ (2.3) 
r=i 

obtained from (2.2) by substituting for the additional multiplicative perturbation am' the 
respective additive perturbation v'. 

Let M(t) = M (I (t)x* (t)} be the matrix of second moments of solution Z(t) of system (2.1). 
and D (t) = M {ox* (t)} is the matrix of second moments of solution x(t) of system (2.3). 

Using Ito's formula it is possible to show that these matrices satisfy the determinate 
linear differential equations 

M’ = L (M), D’ = L (D) + V , L(M) = AM + MA* + 5 tr(Q,M) V, 
r=d 

where tr H is the trace of matrix H. 
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Let M (0) = V, D (0) = 0. Then 

D(t)=iexp[(t-s)L](V)ds&(r)dt 
0 0 

(2.4) 

If system (2.1) is stable (exponentially in the mean square), then system (2.3) has a 
unique steady distribution state z, (see /9,10/J, and M {z,z,*} =lim D(t) as t-co. Using 
equality (2.4) and the readily verified equality M {z*@} = tr(QM{zz*}), we now obtain 

M {aa( -- III {zs*Qxs} = ;ii~ tr (QD (t)) = 1 tr (QM (z)) dt = I 
0 

A similar transition for systems without multiplicative perturbations appeared in /ll/. 
As the result, we obtain from Theorem 2.1 the following criterion. 

Theorem 2.2. If system (2.1) is stable, then for system (2.2) to be stable it is nec- 
essary and sufficient that the inequality M {a"(~~)} (1 is satisfied. 

Cases in which the perturbation parameters are not exactly known are often encountered 
in practice. For instance, only rough estimates of perturbation intensity may be obtained. 
In such cases rough sufficient conditions which enable us to evaluate the system stability by 
simpler methods are of considerable interest. We propose to use in such cases the theoremof 
merging. 

Theorem 2.3. Besides system (2.1) we consider the system 

i = Ar + a (2) u', a (5) = l/t* Qs (2.5) 

Let the relations 

Q~<Q@=I,~,...,PL W=&,(t~ 

be satisfied. Then from the stability of system (2.5) follows the stability of system (2.1). 
This theorem can be proved by using, for instance, the method of Liapmov's functions /9/. 

Remark. The device of perturbation majoration can be used also in the case of system 

(2.6) 

where dr are constant (n x n) matrices, and &(t) are independent in the aggregate standard 
scalar Wiener processes. 

As the majorating system for (2.6) we can take (2.5) in which v(t)=~/Pv,(t) where u0 (t) is 
an n-dimensional process whose components are independent standard Wiener processesandmatrix 
Q is such that 

$*(I, < Q (r = 1, 2,. . ., p) 

3. Stabilization of a process with a single perturbation. Consider system 
(l.l), (1.2) in the case of k = 1 

z’ = AZ + Bu + y (5, u) v’ (3.1) 

y' = cx + y (x, U) w', y (5, u) = (x*Qx + zPPu)'lr 

We use control (1.31, (1.4) for stabilizing system (3.1). We then obtaina clasedsystem 
in variables s(t) and z(t) which is conveniently written in the form 

X*=A(R)X + (X*Q (R)X)‘h Y’ (3.2) 

where 
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Consider the set H = {R 1 matrix A(R) is stable. 
Under condition Awe have R # Cd. 
To stabilize system (3.1) using control (1.3), (1.4) means to select parameters R so as 

to make system (3.2) stable. According to Theorem 2.2 for system (3.2) with R E R to be 
stable it is necessary and sufficient that the inequality 

I (R) = M (X* (R) Q (R) X (R)} < 1 

where X(R) is the steady distribution state of system 

x' = A (R)X + Y’ 
is satisfied. 

It is obvious that then the necessary and sufficient condition of system (3.1) stabiliz- 
ation by control (1.3), (1.4) is the fulfillment of the inequality 

infREd (R) < 1 

The inverse substitution implies that the optimized functional 

1 (R) = M @R*Q~R -t ZR* K* PKzR} = M (7” (zn, uR)} 

is determined for thesteadydistribution state 5s of system (3.3) with observation of (3.4) 

t' = Ax + Bu + v’ (3.3) 
y' = cx + ui (3.4) 

and control ua shaped by control (1.3), (1.4) with parameter R. As the result, we have the 
following theorem. 

Theorem 3.1. If the determinate system (1.5) can be stabilized by control (1.3), 
(1.4) @#a), then for system (3.1) to be stabilizable by control (1.3), (1.4) it is neces- 
sary and sufficient that the inequality 

1 = infRER M {va (XR, UR)} < 1 

where zs is the steady distribution state of system (3.3) with observation of (3.4) and con- 
trol uR. my Control (1.3), (1.4) with parameters R E R for which M{y2 (XR, uR)} <I will 
then stabilize system (3.1). 

Because system (3.3), (3.4) contains only additive perturbations, it is possible to use 
the theorem of separation /2/, which enables us to readily solve the arising optimization 
problem. 

We restrict the analysis to the case of nondegenerate perturbations, and assume that 
matrices Q, P, V, W are positive definite (Q > 0, P > 0, V > 0, W > 0). The optimal control 
parameters K, and Lo are obtained from the relations 

K, = P-‘B*D, L, = SC*W-’ 

where D > 0 and S> 0 are solutions of equations 

(3.5) 

A*D + DA - DBP-‘B*D = -Q, AS + SA* - SC*W-‘x CS = -V (3.6) 

The existence and uniqueness of solutions of the matrix equations (3.6) is implied by 
conditions A (see /6/j. The optimal value of the functional is 

I = tr (DV) + tr (DBP-‘B*DS) (3.7) 

As the result, we find that the inequality Z (1 is the necessary and sufficient condi- 
tion of stabilizability of system (3.1); hence control (1.3), (1.4) with parameters (3.5) 
stabilizes system (3.1). 

The quantity I, = tr (DV) is the optimal value of functional M {$(r, u)} in the problem of 
optimal control of system (3.3) using a control of the form U,= -Kx. 

The inequality ~~<i is the necessary andsufficient condition of stabilizabilityof system 
(3.1) with complete information /l/. Hence the quantity I,=tr(DBP-l*B*DS) may be considered 
as some addition arising in the case of incomplete information. When the perturbations are 
nondegenerate, I, is strictly positive. As the intensity of perturbations in the channel in- 
creases, I, increases, which inhibits stabilization (I,+I,>i). A decrease of their intensity 
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results in the decrease of I, which in degenerate limit cases may vanish. The latter would 
indicate that incomplete information does not inhibit stabilization of the system. Thisoccurs 
in the case of n-th order equations with a single observable unpertrubed coordinate, consid- 
ered in /12/. 

4. Stabilization of a system with several perturbations. Sequential pro- 
cedure. The determination of stabilizability of a system with several perturbations and 
construction of the stabilizing control for it is generally achieved by using a sequential 
procedure similar to that applied in /l/ in the case of complete information. The effect of 
each sequential perturbation added to the system is analyzed at every step of the procedure. 
Let us investigate the transition from system S, to ,!?,+I (for definition of thesesymbolssee 
(l-l), (1.2) ). Let the set R, = {fl I control (1.3), (1.4) stabilizes system 8,) be nonempty. 
Then, using the stability criterion of Theorem 2.2, it is possible to prove that the necess- 
ary and sufficient condition of stabilizability of system sP+l by the control (1.3), (1.4) is 
the fulfillment of the inequality 

where ra is the steady distribution state of system 

P 

Y’ = cz + z Yr (GU) wr* + WP,l 
t-4 

with control na formed by control (1.3),(1.4). Besides, the stabilization of system sp+l shall 
be by Control (1.31, (1.4) with parameters RE R, for which M{yp+18 (2, u)} (1. 

According to that criterion each step of the procedure reduces to solving the problem of 
minimization of the functional for a system in which the additional multiplicative perturba- 
tion is replaced by an additive one. Application of this procedure consists of solving a 
sequence of optimization problems. At the first step we have the problem of minimizing the 
quadratic criterion for a system that contains only additive perturbations, which enables us 
to apply the theorem of separation (see Sect.3) for the determination of optimal control para- 
meters. Subsequent steps represent qualitatively more complex problems, since they involve 
the optimization of systems containing in addition to additive also multiplicative perturba- 
tions whose presence makes it impossible to obtain the analog of the separation theorem. 

5. Majorization of several perturbations by a single perturbation. The 
sufficient criterion of stabilizability. The determination of necessary and suffic- 
ient conditions of stabilizability of a system with several multiplicative perturbations nec- 
essitates the application of the sequential procedure. If, however, the problem is limited 
to the determination of sufficient conditions only, the analysis of stabilizability is consid- 
erably simplified by applying the concept of majorization. 

Theorem 5.1. Let the perturbations of systems (l-l), (1.2) and (3.1) be linked by 
the relations 

s (0 = $ v, (0, w @) = $w,(t) , or (2, 4 < y CT 4 @ = 19%. . ., k) (5.1) 

Then from the stabilizability of system (3.1) follows the stabilizability of system (l.l), 
(1.2), and control (1.3), (1.4) with parameters K and Lwhich stabilizes system (3.1) willal- 
so stabilize system (l.l), (1.2). The proof of Theorem 5.1 directly follows from Theorem2.3, 
if one takes into account that perturbations of the closed system (3.1), (1.3), (1.4)majorate 
by virtue of (5.1) the perturbations of the closed system (l.l), (1.2), (1.3), (1.4). 

The inequality I(1 (see (3.7)) which by Theorem 3.1 is the necessary and sufficient 
condition of stabilizability of system (3.1) is, thus, the sufficient condition of stabiliz- 
ability of system (l.l), (1.2). When l<1,then control (l-3), (1.4) with parameters (3.5) 
that stabilizes system (3.1) will also stabilize system (l.l), (1.2). 

Thus, while the determination of necessary and sufficient conditions of stabilizability 
of system (l.l), (1.2) by the sequential procedure requires the solution of k optimization 
problems, the determination of sufficient conditons necessitates the solution of only one 
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such problem. Note that from the point of view of computation the problem reduces to solving 
matrix equations (3.6), well known in connection with the problem of analytic construction of 
controls. This also simplifies the determination of the respective stabilizing control. 

6. Example. Consider the system 

Z,' = 32 + (6121 + %%)<I'> IP' = u + CPM,', + 6V*' 

whose behavior can be judged by values of y, 

(6.1) 

Y' = Zl + +&' + Burlz' 

We construct for system (6.1), (6.2) a majorating system of the form 

51 = % -t Y (%r %r u) 51'9 22' = 21 + Y (% 3% u) j,. 
Y' = =1 + Y (% %, d53' 

(6.2) 

(6.3) 

where LX(t), tz(t), c.(t) are independent in the aggregate standard Wiener processes. 
For system (6.3) to be majorating for system (6.1), (6.2), it is sufficient to set, for 

example, 

(6.4) 

To stabilize systems (6.1), (6.2) and (6.3) we shall use control (1.3), (1.4) which in 
this case is of the form 

I,' = Z* + 21(y' - 21). 22' = U + 1, (#' - 21) 
u = - k,z, - k,z, (6.5) 

Let us determine the necessary and sufficient conditions of stabilizability of system 
(6.3). For this (see Sect.3) we substitute for the multiplicative perturbations the corres- 
ponding additive perturbations and for the obtained system 

2,' = 2, f 1;1', 2,' = a + 52'. 8' = 21+ b' 

solve the optimization problem using the criterion 

(6.6) 

1 (d = M (9 k, % u)) (6.7) 

For problem (6.6), (6.7) the control (6.5) is optimal with parameters 

k, = d,JP, k, = d,,/P, 2, = s,, 2, = 4, 

(see (3.5), (3.6)), where dl,,& and sll,~ll are elements of matrices D>O and S> 0 which are 
solutions of equations 

A*D+DA- +Dbb*~=--tj, AS+SA*-S&S=-E 

which in this case are readily solved 

(6.8) 

The optimal value of criterion I(U) is 

1 = dn + da*+ f (@ma + %Ad,, + ~&~2) 

With allowance for (6.4) and (6.8) we can obtain for I an explicit expression in termsof 
parameters d,,dl,cp,rp,v,fl of the input system. Since the inequality 1~1 is the necessary 

and sufficient condition of system (6.3) stabilizability, it is the sufficient condition of 
stabilizability of system (6.1), (6.2). If 1~1, control (6.5) with parameters 

where qn,ql* and Pare obtainedfrom (6.4), stabilizes system (6.3) and, consequently also 
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system (6.11, (6.2). 

The author thanks G.N. Mil'shtein for his interest in this work. 
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